
TATION PAGE fo M 40

SAD A226 899

4.fTTIEANIUBTITLE Ada Compiler Validation Summary Report: Concur- FRWNUM S

rent Computer Corporation, C 3Ada Version 0.5, Concurrent Com-
*puter Corporation 8400 with MIPS/R3000 CPU and MIPS/3010 Float -
ing Poiat under RTU Version 5.1 (Host & Target), 90042711.11008

Ottobrunn, FEDERAL REPUBLIC OF GERMANY

7. FEIORING OAAWATION NAMgE(S) AND AORES(ES) PE ORMIG ORANIZATION
IABG-AVF, Industrieanlagen-Betriebsgeselschaft RPR UME

Dept. SZT IABG-VSR-07 1
Einsteinstrasse 20
D-8012 Ottobrunn
FEDERAL REPUBLIC OF' GERMANY___________

S. SPONSOR.. - MI'RINIG. AGENCY NMkE(S) ANDACORESS(ES) 10 011NG .UNT.RINAGENCY

Ada Joint Program Office NURWMBER
United States Department of Defense
Washington, D.C. 20301-3081

1L~m DO I VMWltAVALABLITY STATEMENT ita. ogST1UTON OWOE

Approved for public release; distribution unlimited.

13. AISTPACT (Akdnm 2O wom)

>_ Concurrent Computer Corporation, C3Ada Version 0.5, Ottobrunn, West Germany, Concurrent

1.. Computer Corporation 8400 with MIPS/R3000 CPU and MIPS/3010 Floating Point under RTU
SVersion 5.1 (Host & Target), ACVC 1.11.

-LJ

SEP 2 5 O 19"

14.UIAECTTERMS Ada programming language, Ada Compiler Validation 16. NIaMBER OF PAGS

Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- I&PAMcOOOE

I D- 15A. Ada Joint Program Office
17. Y CLAAFClO Is. SECURRYCLAtCATION UEGr.a ITY QLAUF~RWO -I LNMN W

Of OF TIS PAGEOFAISTRACT 2.LTW FASRC
L IIE UNCLASSIFIED ILNCLASSIFIED

NON 7W41-204= Swiw on2

!I

CHAPTER 1

INTRODUCTION

This Validation Summary Report(/ describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of.x.asing this compiler using the Ada Compiler
Validation Capability O'1V C An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist betveen implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are

vhn In this report.)
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ,The purpose of validating is to ensure conformity
of the compiler to the Aia Standard by testing that the compiler properly
implements legal languagj constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent b is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and duri execution.

1-1

AVF Control Number: IABG-VSR-071
10 May 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #90042711.11008
Concurrent Computer Corporation

C 3Ada version 0.5
Concurrent Computer Corporation 8400

with MIPS/P.3000 CPU and MIPS/3010 Floating Point
under RTU Version 5.1

Prepared By:
IABG mbli, Abt. ITE
Einsteinstrasse 20

D-8012 Ottobrunn
West Germany .-

By__

AV

Dist

L-i

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 27 April 1990.

Compiler Name and Version: C3Ada Version 0.5

Host Computer System: Concurrent Computer Corporation 8400
with MIPS/R3000 CPU

and MIPS/3010 Floating Point
under RTU Version 5.1

Target Computer System: Same as Host

A more detailed description of this Ada implementation is found in section
3.1 of this report.

As a result of this validation effort, Validation Certificate7?TO'O427I11 I-U08
is awarded to Concurrent Computer Corporation. This certificate expires on
01 June 1992.

This report has been reviewed and is approved.

IABG mbH, Abt. ITE Ada Validation Organization
Michael Tonndorf Director, Computer & Software
Einsteinstrasse 20 Engineering Division
D-8012 Ottobrunn Institute for Defense Analyses
West Germany Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond

Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Concurrent Computer Corporation

Ada Validation Facility: IABG, Federal Republic of Germany

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: C 3Ada Version: 0.5

Host Computer System: Concurrent Computer Corporation 8400
with MIPS/R3000 CPU and MIPS/3010
Floating point under RTU Version 5.1

Target Computer System: Same as Host

Customer's Declaration

I, the undersigned, representing Concurrent Computer Corporation, declare that Concurrent
Computer Corporation has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Systeam KG is the Implementor of the above implementation and the certificates shall be
awarded in the name of Concurrent Computer Corporation's corporate name.

Seetharama Shastry (date)
Senior Manager, System Software Development

,.r / /

Dr. org, i erstin (date)
Pre ent, Systeam KG

CONTENTS

CHAPTER 1 TEST INFORMATION 1

1.1 USE OF THIS VALIDATION SUMMARY REPORT . . . 1

1.2 REFERENCES 2

1.3 ACVC TEST CLASSES 2

1.4 DEFINITION OF TERMS 3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES 5

2.1 WITHDRAWN TESTS 5

2.2 INAPPLICABLE TESTS 5

2.3 TEST MODIFICATIONS 9

CHAPTER 3 PROCESSING INFORMATION 10

3.1 TESTING ENVIRONMENT 10

3.2 TEST EXECUTION 11

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro89] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro89]. A
detailed description of the ACVC may be found in the current ACVC User's Guide
(UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject implementation has no nonconformities to the
Ada Standard other than those presented. Copies of this report are available
to the public from the AVF which preformed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro89] Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
Office, May 1989.

[UG891 Ada Compiler Validation Capability User's Guide, 24 October 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A, B,
C, D, E, and L. The first letter of a test name identifies the class to which
it belongs. Class A, C, D, and E tests are executable. Class B and class L
tests are expected to produce errcrs at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECKFILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECKFILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada Standard.
The operation of REPORT and CHECK-FILE is checked by a set of executable
tests. If these units are not operating correctly, validation testing is
discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of the
Ada Standard are detected. Some of the class B tests contain legal Ada code
which must not be flagged illegal by the compiler. This behavior is also
verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list of
the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and implementation-
dependent characteristics. The modifiQations required for this implementation
are described in section 2.3.

2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1) and, possibly
some inapplicable tests (see Section 3.2 and (TJG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The p._-t of the ceztificatin body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses comon storage for all

or part of a program and also for all or part of the data
necessary for the execution of the program; executes user-
written or user-designated programs; performs user-designa-
ted data manipulation, including arithmetic operations and
logic operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and

3

INTRODUCTION

conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro89).

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

4

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada
Standard. The following 65 tests had been withdrawn by the Ada Validation
Organization (AVO) at the time of validation testing. The rationale for
withdrawing each test is available from either the AVO or the AVF. The publi-

cation date for this list of withdrawn tests is 90-03-23.

E28005C C34006D B41308B C45114A C45612B C45651A
C46022A B49008A A74006A B83022B B83022H B83025B
B83025D B83026B C83026A C83041A C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A CD4022A CD4022D
CD4024B CD4024C CD4024D CD4031A CD4051D CD5111A
CD7004C ED7005D CD7005E ADIBO8A AD7006A CD7006E
AD7201A AD7201E CD7204B BD8002A BD8004C CD9005A
CD9005B CDA201E CE2107I CE2119B CE3111C CE3118A
CE3411B CE3412B CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for
a given Ada implementation. The inapplicability criteria for some tests are

explained in documents issued by ISO and the AJPO known as Ada Issues and
conmonly referenced in the format AI-dddd. For this implementation, the
following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

5

IMPLEMENTATION DEPENDENCIES

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C34007P and C34007S are expected to raise CONSTRAINT ERROR. This implemen-
tation optimizes the code at compile time on line 207 and 223 respective-
ly, thus avoiding the operation which would raise CONSTRAINTERROR and so
no exception is raised.

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101F

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type other than
FLOAT, SHOPTFLOAT or LONGFLOAT.

C41401A is expected to raise CONSTRAINT ERROR for the evaluation of cer-
tain attributes, however this implementation derives the values from the

subtypes of the prefix at compile time as allowed by LRM 11.6(7). There-
fore elaboration of the prefix is not involved and CONSTRAINT_ERROR is not
raised.

C45346A declares an array of length INTEGER'LAST/2 + 1. This implementa-
tion raises the proper exception when the array is declared.

C45423A checks that the proper exception is raised if MACHINEOVERFLOWS is
TRUE for the floating point type FLOAT. For this implementation,
MACHINEOVERFLOWS is FALSE.

C45423B checks that the proper exception is raised if MACHINEOVERFLOWS is
TRUE for the floating point type SHORTFLOAT. For this implementation,
MACHINEOVERFLOWS is FALSE.

C45523A and C45622A check that the proper exception is raised if
MACHINEOVERFLOWS is TRUE for floating point types with digits 5. For
this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point-
operations for types that require a SYSTEM.MAXMANTISSA of 47 or greater.

C86001F recompiles package SYSTEM, making package TEXT_10, and hence
package REPORT, obsolete. For this implementation, the package TEXT_10 is
dependent upon package SYSTEM.

6

IMPLEMENTATION DEPENDENCIES

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the range

of DURATION. There are no such -alues for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

CD2B15B checks that STORAGEERROR is raised when the storage size speci-
fied for a collection is too small to hold a single value of the designa-

ted type. For this implementation, the allocated collection size exceeds
what was specified in the length clause (cf. AI-00558).

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

The 21 tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode and
file access method.

Test File Operation Mode File Access Method

CE2102D CREATE INFILE SEQUENTIALIO
CE2102E CREATE OUTFILE SEQUENTIAL_10
CE2102F CREATE INOUTFILE DIRECTIO

CE2102I CREATE IN FILE DIRECTIO
CE2102J CREATE OUTFILE DIRECT_10
CE2102N OPEN INFILE SEQUENTIALIO
CE21020 RESET INFILE SEQUENTIALIO
CE2102P OPEN OUTFILE SEQUENTIALIO

CE2102Q RESET OUTFILE SEQUENTIAL_IO
CE2102R OPEN INOUTFILE DIRECT_10

CE2102S RESET INOUTFILE DIRECTIO
CE2102T OPEN INFILE DIRECTIO

CE2102U RESET INFILE DIRECTIO
CE2102V OPEN OUTFILE DIRECT_10
CE2102W RESET OUTFILE DIRECTIO
CE3102E CREATE INFILE TEXTI0
CE3102F RESET Any Mode TEXT_I0
CE3102G DELETE TEXTI0
CE3102I CREATE OUTFILE TEXTI0
CE3102J OPEN INFILE TEXTIO

CE3102K OPEN OUTFILE TEXT I0

CE2107C, CE2107D, CE2107L, and CE2108B attempt to associate names with
temporary sequential files. The proper exception is raised when such an
association is attempted.

CE2107H and CE2108D attempt to associate names with temporary direct

7

IMPLEMENTATION DEPENDENCIES

files. The proper exception is raised when such an association is at-
tempted.

CE2203A checks that WRITE raises USEERROR if the capacity of the external
file is exceeded for SEQUENTIALIO. This implementation does not restrict
file capacity.

EE2401D contains instantiations of package DIRECTIO with unconstrained
array types. This implementation raises USEERROR upon creation of such a
file.

CE2403A checks that WRITE raises USEERROR if the capacity of the external
file is exceeded for DIRECT_10. This implementation does not restrict file
capacity.

CE3111B and CE3115A assume that a PUT operation writes data to an external
file immediately. This implementation uses line buffers; only complete
lines are written to an external file by a PUTLINE operation. Thus at-
tempts to GET data before a PUTLINE operation in these tests raise
ENDERROR.

CE3112B assumes that temporary text files are given names. For this imple-
mentation, temporary text files are not given names.

CE3202A assumes that the NAME operation is supported for STANDARDINPUT
and STANDARDOUTPUT. For this implementation the underlying operating
system does not support the NAME operation for STANDARDINPUT and
STANDARDOUTPUT. Thus the calls of the NAME operation for the standard
files in this test raise USEERROR.

CE3304A checks that USEERROR is raised if a call to SETLINELENGTH or
SETPAGELENGTH specifies a value that is inappropriate for external
files. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

8

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 17 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24009A B29001A B38003A B38009A B38009B
B91001H BC2001D BC2001E BC3204B BC3205B BC3205D

For the following tests a pragma ELABORATE for the package REPORT was added.

C83030C C86007A

The following tests compile without error, as allowed by AI-00256
--the units are illegal only with respect to units that they do not depend on.
However, all errors are detected at link time. The AVO ruled that this is
acceptable behavior.

BC3204C BC3204D BC3205C BC3205D

9

PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada implementation
system, see:

Mr. Seetharama Shastry
106 Apple Street
Tinton Falls, NJ 07724
Tel. 201-758-7277

For a point of contact for sales information about this Ada implementation
system, see:

Mr. Mike Devlin
106 Apple Street
Tinton Falls, NJ 07724
Tel. 201-758-7531

Testing of this Ada implementation was conducted at Systeam KG Dr. Winter-
stein, Karlsruhe, Federal Republic of Germany.

10

PROCESSING INFORMATION

3.2 TEST EXECUTION

Version 1.11 of the ACVC comprises 4140 tests. When this compiler was tested,
the tests listed in section 2.1 had been withdrawn because of test errors.
The AVF determined that 296 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported by
the implementation. In addition, the modified tests mentioned in section 2.3
were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a SUN computer and copied onto the host compu-
ter via ethernet.

After the test files were loaded onto the host computer, the full set of tests
was processed by the Ada implementation.

Testing was performed using command scripts provided.by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options.

Tests were compiled using the comand

sas compile -v -1 <file name>

and linked using the command

sas link -v <test name>

For some tests which report errors at link time a listing was created by the
linker using the command

sas link -v -L <test name>.m <name of main>

The options explicitly invoked are described as follows

-1 This option controls the generation of source listings. The de-
fault action is not to generate the complete source listings.

-L This option specifies the name of the file or the directory for
the listing file. By default the warning and error messages are
directed to stdout.

-v This option causes the compiler or the linker to produce the
version and information messages to be displayed. The default
action is to suppress the display of such information.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

11

MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
following macro parameters are defined in terms of the value V of
$MAXINLEN which is the maximum input line length permitted for the tested
implementation. For these parameters, Ada string expressions are given
rather than the macro values themselves.

Macro Parameter Macro Value

$BIG IDI (1..V-1 -> 'A', V -> '1')

$BIGID2 (1..V-1 -> 'A', V-> '2')

$BIGID3 (1..V/2 -> 'A' & '3' &
(1..V-1-V/2 -> 'A')

$BIGID4 (l..V/2 -> 'A') & '4' &
(1..V-1-V/2 -> 'A')

$BIGINTLIT (l..V-3 0> '0') & "298"

$BIGREALLIT (1..V-5 -> '0') & "690.0"

$BIGSTRING1 '"' & (l..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (1..V-l-V/2 -> 'A') & '1' & '"'

$BLANKS (1..V-20 -> '

$MAXLENINTBASED_LITERAL
"2:" & (1..V-5 -> '0') & "11:"

SMAX_LEN_REALBASEDLITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 -> 'A') & ""

MACRO PARAMETERS

The following table contains the values for the remaining macro parameters.

Macro Parameter Macro Value

SMAXINLEN 255

SACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULTMEMSIZE 2147483648

SDEFAULTSTORUNIT 8

$DEFAULTSYSNAME MIPS RTU

$DELTADOC 2#1.0#E-31

$ENTRYADDRESS SYS-TEM. INTERRUPT VECTOR (SYSTEM. SIGUSR1)

$ENTRYADDRESS1 SYSTEM. INTERRUPTVECTOR (SYSTEM.SIGUSR2)

$ENTRYADDRESS2 SYSTEM. INTERRUPT VECTOR (SYSTEM.SIGUSR3)

$FIELDLAST 512

$FILE-TERMINATOR I IT

$FIXEDNAME NOSUCHFIXEDNAME

SFLOATNAME NOSUCHFLOATNAME

$FORZ4_STRING

$FORM-STRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATER THAN DURAT ION

0.0

$GREATERTHANDURATIONBASELAST
200000.0

$GREATER THAN FLOATBASELAST

16#1 .0#E+32

S GREATERTHANFLOATSAFE LARGE
16#0 .8#E+32

$GREATERTHANSHORTFLOATSAFELARGE
0.0

MACRO PARAMETERS

$HIGHPRIORITY 15

$ILLEGALEXTERNALFILENAME1

/nodir/ fiel

$ ILLEGALEXTERNALFILENAME2
/wrongdir/filte2

$ INAPPROPRIATELINELENGTH
-1

$ INAP PROP RIATE-PAGELENGTH
-1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUAGE ASSEMBLER

$LESSTHANDURATION -0.0

$LESSTHAN DURATIONBASEFIRST
-200000.0

$LINETERMINATOR ASCII.LF

SLOWPRIORITY 0

$MACHINECODESTATEMENT
NULL;

SMACHINECODETYPE NOSUCHTYPE

SMANTISSADOC 31

SMAXDIGITS 15

$MAXINT 2147483647

SMAXINTPLUS_1 2147483648

SHININT -2147483648

$NAME SHORTSHORT INTEGER

$NAMELIST MIPSRTU

MACRO PARAMETERS

$NAMESPECIFICATIONi /benl/mp183/acvcll/chape/X2120A.; 1

SNAMES.PECIFICATION2 /benl/rpl83/acvcll/chape/X2120B. :1

$NAME-SPECIFICATION3 /benl/mpl83/acvcll/chape/X3119A. ;1

SNEGBASEDINT 16#FFFFFFFE#

$NEWHEMSIZE 2147483648

$NEWSTORUNIT 8

$NEWSYS-NAME MIPS-RTU

$PAGE-TERMINATOR f I

$RECORDDEFINITION NEW INTEGER

$RECORDNAME NOSUCHMACHINECODETYPE

$TASK-SIZE 32

$TASK STORAGESIZE 10240

$TICK 1.0/60.0

$VARIABLEADDRESS GETVARIABLEADDRESS

$VARIABLEADDRESS1 - GETVARIABLEADDRESS1

$VARIABLEADDRESS2 GETVARIABLEADDRESS2

$YOUR-PRAGMA RES IDENT

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. This list is identical to the set
of options given in 3.2.

Compiler and Linker Options

-1 This option controls the generation of source listings. The default action
is not to generate the complete source listings.

-L This option specifies the name of the file or the directory for the listing file.
By default, the warning and error messages are directed to stdout.

-v This option causes the Compiler or the Linker to produce the version and
information messages to be displayed. The default action is to suppress the
display of such information.

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
Chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of this
Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this Appendix
are to compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483_648 .. 2_147_483 647;

type SHORTINTEGER is range -32_768 .. 32_767;

type SHORTSHORTINTEGER is range -128 .. 127;

type FLOAT is digits 6 range
- 16#0.FFFFFF#E+32 .. 16#0.FFFFFF#E+32;

type LONGFLOAT is digits 15 range

- 16#0.FFFF_FFFFFFFF_FS#E+256
16#0.FFFFFFFFFFFF_F8#E+256;

type DURATION is delta 2#1.0#E-14 range

- 131_072.0 .. 131_071.999_938_964_843_75;

en .SA....
end STANDARD;

Appendix F Chapter 15

15 Appendix F

This chapter, together with the Chapters 16 and 17, is the Appendix F required in the
LRIM, in which all implementation-dependent characteristics of an Ada implementation
are described.

15.1 Implementation-Dependent Pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

15.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined by the language-
their effect is (at least partly) implementation-dependent 'and stated here.

CONTROLLED
has no effect.

ELABORATE
is fully implemented. The Compiler assumes a PRAGMA elaborate, i.e. stores
a unit in the library as if a PRAGMA elaborate for a unit u was given, if the
compiled unit contains an instantiantion of u (or for a generic program unit in u)
and if it is clear that u muwt have been elaborated before the compiled unit. In
this case an appropriate information message is given. By this meand it is avoided
that an elaboration order is chosen which would lead to a PROGRAM.ERROP
when elaborating the instantiation.

INLINE
Inline expansion of subprograms is supported with the following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of
this subprogram will be expanded.

. ... ,,,., ,. ,,., ,,. , . 2.

Chapter 15 Appendix F

INTERFACE
is supported for ASSEMBLER and C. PRAGMA interface(assembler....) pro-
vides an interface with the internal calling conventions of the Ada System.

PRAGMA interf ace (C) is provided to support the MIPS procedure calling
standard.

PRAGMA interface should always be used in connection with the PRAGMA exter-
nal-name (see §15.1.2), otherwise the Compiler will generate an internal name
that leads to an unsolved reference during linking. These generated names are
prefixed with an underline; therefore the user should not use names beginning
with an underline.

LIST
is fully implemented.

MEMORY-SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §16.1.

PAGE
is fully implemented. Note that form feed characters in the source-do not cause
a new page in the listing. They are - as well the other format .!F,: to rs (horizontal
tabulation, vertical tabulation, carriage return, and line feed) - replaced by a -

character in the listing.

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of
the subtype priority, and second, the effect on scheduling (Chapter 14) of not
giving this pragma for a task or main program. The range of subtype priority is
0 .. 15, as declared in the predefined library package system (see §15.3); and the
effect on scheduling of leaving the priority of a task or main program undefined by

r3 A .n rrn, p. - T'aav V ,3'1. ,I

Appendix F Chapter 15

not giving PRAGMA priority for it is the same as if the PRAGMA priority 0
had been given (i.e. the task has the lowest priority).

SHARED
is fully supported.

STORAGE-UNIT
has no effect.

SUPPRESS
has no effect, but see §15.1.2 for the imp!ementation-defined PRAGMA suppress-
all.

SYSTEM.NAME
has no effect.

15.1.2 Implementation-Defined Pragmas

BYTE-PACK
see §16.1.

EXTERNALNAME (<string>, <ada.name>)
<adaname> specifies the name of a subprogram or of an object declared in a
library package, <atring> zust be a string literal. It defines the external name
of the specified item. The Compiler uses a symbol with this name in the call
instruction for the subprogram. The subprogram declaration of <ada.name> must
precede this pragma. If several subprograms with the same name satis.y this
requirement the pragma refers to that subprogram which is declared last.
Upper and lower cases are distinguished within <string>, i.e. <string> must be
given exactly as it is to be used by external routines. This pragma will be used
in connection with the pragmas interface (C) or interface (assembler) (see
§15.1.1).

C3 Ada Compiler - User Manual

Chapter 15 Appendix F

RESIDENT (<ada.name>)
this pragma causes the value of the object to be held in memory and prevents
assignments of a value to the object <ada.name> from being eliminated by the
optimizer. The following code sequence demonstrates the intended usage of the
pragma:

x : integer;
a : SYSTEM.address;

BEGIN
X :- 5;
a :- x'ADDRESS;
do-something (a); -- let do-something be a non-local

-- procedure
-- a.ALL will be read in the body

-- of do-something
x := 8;

If this code _:quence is compiled with the optimizer on, the statement x = 5;
will be eliminated because from the point of view of the optimizer the value of x
is not used before the next assignment to x. Therefore

PRAGMA resident x);

should be inserted after the declaration of x.

This pragma can be applied to all those kinds of objects for which the address
clause is supported (cf. §16.5).
It will often be used in connection with the PRAGMA interface (C ...) (see
§15.1.4).

SUPPRESS-ALL
causes all the runtime checks described in the LRM(§11.7) to be suppressed; this
pragma is only allowed at the start of a compilation before the frst compilation
unit; it applies to the whole compilation.

C3 Ada Compiler - User Manua!

Appendix F Chapter 15

15.2 Implementation-Dependent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this section.

15.2.1 Language-Defined Attributes

The name and type of all the language-defined attributes are as given in the LRM. We
note here only the implementation-dependent aspects.

ADDRESS
If this attribute is applied to an object for which storage is allocated, it yields the
address of the first storage unit that is occupied by the object.
If it is applied to a subprogram or to. a task, it yields the address of the entry
point of the subprogram or task body.
If it is applied to a task L-try for which an address clause is given, it yields the
address given in the address clause.
For any other entity this attribute is not supported and will return the value
system. address.zero.

IMAGE
The image of a character other than a graphic character (cf. LRM(§3.5.5(11)))
is the string obtained by replacing each italic character in the indication of the
character literal (given in the LRM(Annex C(13))) by the corresponding upper-
case character. For example, character' image (nul) - "NUT".

MACHINE _OVERFLC'WS
Yields always false.

MACHINE-ROUNDS
Yields always false.

STORAGE-SIZE
The value delivered by this attribute applied to an access type is as follows:

)A n p;!er - !J~pr Manual

Chapter 15 Appendix F

If a length specification (STORAGE-SIZE, see §16.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE-SIZE given
for the access type, the attribute delivers the number of storage units currently
allocated for the collection. Note that dynamic collections are extended if needed.
If the collection manager is used for a dynamic collection the attribute delivers the
number of storage units currently allocated for the collection. Note that in this
case the number of storage units currently allocated may be decreased by release
operations.

The value delivered by this attribute applied to a task type or task object is as
follows:
If a length specification (STORAGE-SIZE, see §16.2) has been given for the task
type, the attribute delivers that specified value; otherwise, the default value is
returned.

15.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

15.3 Specification of the Package SYSTEM

The package system as required in the LRM(§13.7) is reprinted here with all imple-
mentation-dependent characteristics and extensions filled in.

PACKAGE system IS

TYPE designaed-by-address IS LIMITED PRIVATE;

TYPE address IS ACCESS designated-by-address;
FOR address'storage-size USE 0;

address-zero : CONSTANT address := NULL;

TYPE name IS (mipsrtu);
system-name : CONSTANT name := mips-rtu;

storage-unit : CONSTANT := 8;
memory-size : CONSTANT := 2 ** 31;
minint : CONSTANT := - 2 ** 31;
max-int : CONSTANT :- 2 ** 31 - 1;

(~ Aia -vvni~i. -rrq, M~~n6

AppendLx F Chapter 15

max-digits : CONSTANT : 15;
max-mantissa : CONSTANT : 31;
fine-delua : CONSTANT 2.0 ** (-31);
tick : CONSTANT : 1.0/60.0;

SUBTYPE priority IS integer RANGE 0 .. 15;

FUNCTION "*" (left : address; right integer) RETURN address;
FUNCTION "+" (left : integer; right address) RETURN address;
FUNCTION -" (left : address; right integer) RETURN address;
FUNCTION "-" (left : address; right : address) RETURN integer;

SUBTYPE external-address IS STRING;
-- External addresses use hexadecimal notation with characters
-- '0'..'9', 'a'..'f' and 'A'..'F'. For instance:
- - "7FFFFFFF"
-- "80000000"
- - "8" represents the same address as "00000008"

FUNCTION convert-address (addr : external-address) RETURN address;
-- CONSTRAINT-ERROR is raised if the external address ADDR
-- is the empty string, contains characters other than
-- *0..'9, 'a'..'f', 'A'..'F' or if the resulting address
-- value cannot be represented with 32 bits.

FUNCTION convert-address (addr : address) RETURN external-address;
-- The resulting external address consists of exactly 8
-- characters '0'..'9'. 'A'..*F'.

TYPE interrupt-number IS RANGE I .. 32;

interrupt-vector : ARRAY (interruptnumber) OF address;
-- The mapping of signal numbers to interrupt addresses is
-- defined by this array.

sighup : CONSTANT : 1;
sigint : CONSTANT : 2;
sigquit : CONSTANT : 3;
sigill : CONSTANT : 4;
sigtrap : CONSTANT : 5;
sigiot : CONSTANT : 6;
sigabrt : CONSTANT : sigiot;
sigemt : CONSTANT : 7;
sigfpe : CONSTANT : 8;
sigkill : CONSTANT :- 9;
sigbus : CONSTANT :- 10;
sigsegv : CONSTANT : 11;

r' A,. A -A .rn ,

Chapter 15 Appendix F

sigsys : CONSTANT : 12;
sigpipe : CONSTANT : 13;
sigalrm : CONSTANT : 14;
sigterm : CONSTANT :s 15;
sigusrl : CONSTANT : 16;
sigusr2 : CONSTANT :m 17;
sigchld : CONSTANT : 18;
sigcld : CONSTANT : sigchld;
sigpwr : CONSTANT : 19;
sigstop : CONSTANT : 20;
sigtstp : CONSTANT :s 21;
sigcont : CONSTANT : 22;
sigttin : CONSTANT : 23;
sigttou : CONSTANT : 24;
sigtint : CONSTANT : 25;
sigxcpu : CONSTANT :s 26;
sigxfsz : CONSTANT :a 27;

•sigwinch : CONSTANT : 28;
sigurg : CONSTANT : 29;
sigvtalrm : CONSTANT : 30;
sigprof : CONSTANT : 31;
sigio : CONSTANT : 32;
sigpoll : CONSTANT : sigio;

non-adaserror : EXCEPTION;

-- nonadaserror is raised, if some event occurs which does not
-- correspond to any situation covered by Ada. e.g.:
- - illegal instruction encountered
- - error during address translation
- - illegal address

TYPE exception-id IS NEW address;

no-exception-id : CONSTANT exception-id : address-zero;

-- Coding of the predefined exceptions:
constrainterror.id : CONSTANT exceptionid : ...

numeric-error-id : CONSTANT exception-id : ...

programerror-id : CONSTANT exception-id : ...

storage-orror-id : CONSTANT exceptionid : ...

tasking-error-id : CONSTANT exception-id : ...

non-ada-error-id : CONSTANT exception-id : ...

status-error-id : CONSTANT exceptionid : ...

modeerror-id : CONSTANT exception-id : ...

t03 AA-% , ,.:. %,, X...

Appendix F Chapter 15

name-error-id : CONSTANT exception-id :
use-error-id : CONSTANT exception-id
device.error-id : CONSTANT exceptionid : ;
end.error-id : CONSTANT exception-id : ;
data-error-id : CONSTANT exceptionid : ;
layout-error-id : CONSTANT exceptionid :=
time.error-id : CONSTANT exception-id :=

no-error.code CONSTANT :- 0;

TYPE exception-information
IS RECORD

excp.id exception-id;
-- Identification of the exception. The codings of
-- the predefined exceptions are given above.

code.addr : address;
-- Code address where the exception occured. Depending
-- on the kind of the exception it may be be address of
-- the instruction which caused the exception. or it
-- may be the address of the instruction which would
-- have been executed if the exception had not occured.

error-code integer;
END RECORD;

PROCEDURE get.exception-information
(excp-info : OUT exception-information);

-- The subprogram get-exceptioninformation must only be called
-- from within an exception handler BEFORE ANY OTHER EXCEPTION
-- IS RAISED. It then returns the information record about the
-- actually handled exception.
-- Otherwise, its result is undefined.

TYPE exit-code IS NEW integer;
error : CONSTANT exit-code := 1;
success : CONSTANT exit-code :: 0;

PROCEDURE set-exit-code (val : exit-code):
-- Specifies the exit code which is returned to the
-- operating system if the Ada program terminates normally.
-- The default exit code is 'success'. If the program is
-- abandoned because of an exception, the exit code is

"- 'error',

PRIVATE
-- private declarations

END system;

C" Ada Compiler - 'User Manual

Chapter 15 Appendix F

15.4 Restrictions on Representation Clauses

See Chapter 16 of this manual.

15.5 Conventions for Implementation-Generated Names

There are implementation generated components but these have no names. (cf. §16.4
of this manual).

15.6 Expressions in Address Clauses

See §16.5 of this manual.

15.7 Restrictions on Unchecked Conversions

The implementation supports unchecked type conversions for all kinds of source and
target types with the restriction that the target type must not be an unconstrained
array type. The result value of the unchecked conversion is unpredictable, if

targelt._typo'SIZE > source_ type'SIZE

15.8 Characteristics of the Tnput-Output Packages

The implementation-dependent characteristics of the input-output packages as defined
in the LLM(Chapter 14) are reported in Chapter 17 of this manual.

15.9 Requirements for a Main Program

A main program must be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

C3 Ada Coymiler - User Manual IA

Appendix F Chapter 15

15.10 Unchecked Storage Deallocation

The generic procedure unchecked.deallocation is provided; the effect of calling an
instance of this procedure is as described in the LRM(§13.10.1).

The implementation also provides an implementa'on-deffned package collection.
manager, which has advantages over unchecked deallocation in some applications.

Unchecked deallocation and operations of the collection_Manager can be combined
as follows:

* collectionmanager. reset can be applied to a collection on which unchecked
deallocation has also been used. The effect is that storage of all objects of the
collection is reclaimed.

" After the first unchecked.deallocat ion (release) on a collection, all following
calls of release (unchecked deallocation) until the next reset have no effect,
i.e. storage is not reclaimed.

" after a reset a collection can be managed by mark and release (resp. unchecked
deallocation) with the normal effect even if it was managed by unchecked
deallocation (resp. mark and release) before the reset.

15.11 Machine Code Insertions

A package machine-code is not provided and machine code insertions are not sup-
ported.

15.12 Numeric Error

The predefined exception numeric-error is never raised implicitly by any predefined
operation; instead the predefined exception constraint -error is raised.

C3 Ada Com'i.ler - User Manual ii

Chapter 16 Appendix F: Representation Clauses

16 Appendix F: Representation Clauses

In this chapter we follow the section numbering of Chapter 13 of the LRM and provide
notes for the use of the features described in each section.

16.1 Pragmas

PACK
As stipulated in the LILM(§13.1), this pragma may be given for a record or array
type. It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to consecutive components are minimized.
For components whose type is an array or record type the PRAGMA PACK has no
effect on the mapping of the component type. For all other component types the
Compiler will choose a representation for the component type that needs minimal
storage space (packing down to the bit level). Thus the components of a packed
data structure will in general not start at storage unit boundaries.

BYTE-PACK
This is an implementation-defined pragma which takes the same argument as the
predefined language PRAGMA PACK and is allowed at the same positions. For
components whose type is an array or record type the PRAGMA BYTE-PACK has
no effect on the mapping of the component type. For all other component types
the Compiler will try to choose a more compact representation for the component
type. But in contrast to PA _A PACK all components of a packed data structure
will start at storage unit boundaries and the size of the components will be a
multiple of system. storage -unit. Thus, the PRAGMA BYTE-PACK does not
effect packing down to the bit level (for this see PRAGMA PACK).

., .A. 'T-... po. - User Manual

Appendix F: Representation Clauses Chapter 16
U

16.2 Length Clauses

SIZE
for all integer, fixed point and enumeration types the value must be <= 32;

for float types the value must be = 32 (this is the amount of storage which is
associated with these types anyway);
for long.float types the value must be = 64 &his is the amount of storage which
is associated with these types anyway).
for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
If any of the above restrictions are violated, the Compiler responds with a RE-
STRICTION error message in the Compiler listing.

STORAGE-SIZE
Collection size: If no length clause is given, the storage space needed to contain

objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K bytes if no length
clause is given. If the task is to be allotted either more or less space, a length
clause must be given for .its task type, and then all tasks of this type will be
allotted the amount of space stipulated in the length clause (the activation of a
small task requires about 1.4K bytes). Whether a length clause is given or not,
the space allotted is not extended dynamically at runtime.

SMALL
there is no implementation-dependent restriction. Any specification for SMALL

that is allowed by the LRM can be given. In particular those values for SMALL are
also supported which are not a power of two.

16.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the
largest integer type which is supported; this is the type integer defined in package
standard.

. ._ - er Manual in

* Chapter 16 Appendix F: Representation Clauses

16.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignmer-t.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

* If the record type includes variant parts ar.d if it has either more than one
discriminant or else the only discriminant may hold more than 256 different values,
the generated component holds the size of the record object.

* If the record type includes array or record components whose sizes depend on dis-
criminants, the generated coLL onents hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. LRM(§13.4(8))) denoting these
components. So the mapping of these components cannof be :nfl- ,' by a represen-
tation clause.

16.5 Address Clauses

Address clauses are supported for objects declared by an object declaration and for
single task entries. If an address clause is given for a subprogram, package or a task
unit, the Compiler responds with a RESTRICTION error message in the Compiler
listing.

If an address clause is given for an object, the storage occupied by the object starts at
the given address. Address clauses for single entries are supported.

16.6 Change of Representation

The implementation places no additional restrictions on changes of representation.

* Appendix F: Input-Output Chapter 17

17 Appendix F: Input-Output

The NAME parameter is a system-dependent parameter that is used for control of
external files. It must be a legal RTU pathname conforming to the following syntax:

pathname ::- [/I [dirname {/ dirnamel /I filename

dirname and filename are strings of up to 14 characters length. Any character exce-t
ASCII.NUL, ' '(blank), and '/'(slash) may be used.

There are two implementation-dependent types for TEXTIO:

type COUNT is range 0 .. integer'last;
subtype FIELD is integer range 0 .. 512;

The line terminator is implemented by the character ASCII.LF, the page terminator
by ASCII.FF. There is no character for the file terminator. End of file is deduced from
the file size.

